CS580 Algorithm Design, Analysis, and Implementation

Lecture notes, Jan 27, 2022
Wufei Ma

1 Dynamic Programming

Weighted interval scheduling. The dynamic programming algorithms compute the optimal value. We can use post-processing to find the exact solution.

```
Function Find-Solution(j):
    if j == 0 then:
        return null
    else if v[j] + M[p(j)] > M[j-1]:
        print j
        Find-Solution(p(j))
    else:
            Find-Solution(j-1)
    endif
```

The number of recursive calls is less than or equal to n so the complexity is $O(n)$.
We can also implement the dynamic programming algorithm in a bottom-up manner by computing OPT (\cdot) from 1 to n.

Least squares. Given n points in the plane, $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$. Find a line $y=$ $a x+b$ that minimizes the sum of the squared error.

We can solve this problem with calculus:

$$
a=\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}}, \quad b=\frac{\sum_{i} y_{i}-a \sum_{i} x_{i}}{n}
$$

Segmented least squares. Points lie roughly on a sequence of several line segments. Given n points in the plane $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ with $x_{1}<\cdots<x_{n}$, find a sequence of lines that minimizes the sum of the sums of the squared errors E in each segment and the number of lines L :

$$
E+c \cdot L, \quad c>0
$$

Let $\operatorname{OPT}(j)$ be the minimum cost for points p_{1}, \ldots, p_{j}. Let $e(i, j)$ be the minimum sum of squares for points p_{1}, \ldots, p_{j}. To compute $\operatorname{OPT}(j)$, the last line segment uses points p_{i}, \ldots, p_{j} for some i and the cost is $e(i, j)+c+\mathrm{OPT}(i-1)$.

Figure 1: Segmented least squares.

```
1 Function Segmented-Least-Squares():
    M[0] = 0
    for j = 1 to n:
        for i = 1 to j:
            compute e(i, j)
    for j = 1 to n:
        M[j] = min(e(i,j) + c + M[i-1]) for 1 <= i <= j
    return M[n]
```

Since we compute $e(i, j)$, which takes $O(n)$ time, for $O\left(n^{2}\right)$ pairs, the running time of this algorithm is $O\left(n^{3}\right)$.

How do we find the optimal solution to this problem?
In fact, we can solve this problem in $O\left(n^{2}\right)$ time by pre-computing various statistics.
Knapsack problem. Given n objects and a knapsack. Item i weights $w_{i}>0$ kilograms and has value $v_{i}>0$. Knapsack has capacity of W kilograms. The goal is to fill knapsack so as to maximize the total value.

Let $\operatorname{OPT}(i, w)$ be the max profit from items $1, \ldots, i$ with weight limit w. We have

$$
\operatorname{OPT}(i)= \begin{cases}0 & \text { if } i=0 \\ \operatorname{OPT}(i-1, w) & \text { if } w_{i}>w \\ \max \left\{\operatorname{OPT}(i-1, w), v_{i}+\operatorname{OPT}\left(i-1, w-w_{i}\right)\right\} & \text { otherwise }\end{cases}
$$

This algorithm basically fills up an n-by- W matrix, and the running time is $O(n W)$, which is pseudo-polynomial. The decision version of Knapsack is NP-complete.

Knapsack approximation algorithm. There exists a poly-time algorithm that produces a feasible solution that has a value within 0.01% of optimum.

