
CS580 Algorithm Design, Analysis, and Implementation

Lecture notes, Jan 27, 2022
Wufei Ma

1 Dynamic Programming

Weighted interval scheduling. The dynamic programming algorithms compute the
optimal value. We can use post-processing to find the exact solution.

1 Function Find-Solution(j):

2 if j == 0 then:

3 return null

4 else if v[j] + M[p(j)] > M[j-1]:

5 print j

6 Find-Solution(p(j))

7 else:

8 Find-Solution(j-1)

9 endif

The number of recursive calls is less than or equal to n so the complexity is O(n).

We can also implement the dynamic programming algorithm in a bottom-up manner
by computing OPT(·) from 1 to n.

Least squares. Given n points in the plane, (x1, y1), . . . , (xn, yn). Find a line y =
ax + b that minimizes the sum of the squared error.

We can solve this problem with calculus:

a =
n ∑i xiyi − (∑i xi)(∑i yi)

n ∑i x2
i − (∑i xi)2

, b =
∑i yi − a ∑i xi

n

Segmented least squares. Points lie roughly on a sequence of several line segments.
Given n points in the plane (x1, y1), . . . , (xn, yn) with x1 < · · · < xn, find a sequence
of lines that minimizes the sum of the sums of the squared errors E in each segment
and the number of lines L:

E + c · L, c > 0

Let OPT(j) be the minimum cost for points p1, . . . , pj. Let e(i, j) be the minimum
sum of squares for points p1, . . . , pj. To compute OPT(j), the last line segment uses
points pi, . . . , pj for some i and the cost is e(i, j) + c + OPT(i − 1).

1



Figure 1: Segmented least squares.

1 Function Segmented-Least-Squares():

2 M[0] = 0

3 for j = 1 to n:

4 for i = 1 to j:

5 compute e(i, j)

6 for j = 1 to n:

7 M[j] = min(e(i,j) + c + M[i-1]) for 1 <= i <= j

8 return M[n]

Since we compute e(i, j), which takes O(n) time, for O(n2) pairs, the running time of
this algorithm is O(n3).

How do we find the optimal solution to this problem?

In fact, we can solve this problem in O(n2) time by pre-computing various statistics.

Knapsack problem. Given n objects and a knapsack. Item i weights wi > 0 kilo-
grams and has value vi > 0. Knapsack has capacity of W kilograms. The goal is to
fill knapsack so as to maximize the total value.

Let OPT(i, w) be the max profit from items 1, . . . , i with weight limit w. We have

OPT(i) =

!
"#

"$

0 if i = 0
OPT(i − 1, w) if wi > w
max{OPT(i − 1, w), vi + OPT(i − 1, w − wi)} otherwise

This algorithm basically fills up an n-by-W matrix, and the running time is O(nW),
which is pseudo-polynomial. The decision version of Knapsack is NP-complete.

Knapsack approximation algorithm. There exists a poly-time algorithm that pro-
duces a feasible solution that has a value within 0.01% of optimum.

2


