
CS580 Algorithm Design, Analysis, and Implementation

Lecture notes, Jan 25, 2022
Wufei Ma

1 Search Trees

Binary tree. Each node has two children, which could be empty. It also has a parent,
which could also be empty.

◦ A node without any children (both empty) is a leaf node.

◦ The node without a parent is a root node.

◦ γ is a descendant of µ if γ is a child of µ or a descendant of a child of µ.

◦ If γ is a descendant of µ, then µ is an ancestor of γ.

◦ The depth of µ is the number of edges from root to µ.

◦ The height of µ is the max number of edges from µ to a leaf.

◦ The subtree of µ consists of µ and its descendant.

A node can be implemented with three node pointers and a key, and a tree can be
represented by a node.

Figure 1: A binary tree.

Traversals. There are three types of traversals, in-order, pre-order, and post-order.

1 Procedure In-Order(u):

2 if u != null then:

3 In-Order(u.l)

4 print(u.key)

5 In-Order(u.r)

6 endif

1



1 Procedure Pre-Order(u):

2 if u != null then:

3 print(u.key)

4 In-Order(u.l)

5 In-Order(u.r)

6 endif

1 Procedure Post-Order(u):

2 if u != null then:

3 In-Order(u.l)

4 In-Order(u.r)

5 print(u.key)

6 endif

Figure 2: Tree traversals.

A property. µ is an ancestor of γ if and only if pre(µ) < pre(γ) and post(µ) >
post(γ).

Figure 3: A property.

Binary search tree. A binary tree is a binary search tree if the keys printed in-order
is sorted.

2



All operations on binary search tree, including Search, Min, Successor, and Insertion,
are in O(h).

Searching.

1 Function Search(x, u):

2 if u == null or x = u.key then:

3 return u

4 else:

5 if x < u.key then:

6 return Search(x, u.l)

7 else:

8 return Search(x, u.r)

Insertion.

1 Procedure Insert(p, r):

2 # insert r into a tree denoted by p

3 x = null

4 u = p

5 while u != null:

6 x = u

7 if r.key < u.key then:

8 u = u.l

9 else:

10 u = u.r

11 endif

12 endwhile

13 r.p = x

14 if x == null then:

15 p = r

16 else:

17 if r.key < x.key then:

18 x.l = r

19 else:

20 x.r = r

21 endif

22 endif

Deletion.

1. Case I: The node has no children. Just delete this node.

2. Case II: The node has one child. Replace with the child.

3. Case III: The node has two children. Replace the key with its successor. Delete
its successor. (The successor has at most one child).

3



Figure 4: Deletion.

2 Dynamic Programming

Algorithmic paradigms.

◦ Greedy

◦ Divide-and-conquer

◦ Dynamic programming

Weighted interval scheduling. Job j starts at sj, finishes at f j, and has weight (or
value) vj. Two jobs are compatible if they don’t overlap. The goal is to find the
maximum weight subset of mutually compatible jobs.

Figure 5: Weighted interval scheduling.

If all weights are 1, the greedy algorithm works, and we pick the job with the earliest
finish time that is compatible with chosen jobs.

4



Without loss of generality, we assume f1 ≤ · · · ≤ fn. Let p(j) be the largets index
i < j such that job i is compatbile with j. Let OPT(j) be the value of optimal solution
to the problem consisting of jobs 1, . . . , j.

◦ Case I: OPT selects job j. We collect profit vj and OPT(p(j).

◦ Case II: OPT does not select job j. We collect profit OPT(j-1).

We have

OPT(j) =

!
0 if j = 0
max{vj + OPT(p(j)), OPT(j − 1)} otherwise

Implementation. Store results of sub-problems in a cache to avoid computing sub-
problems multiple times. This algorithm takes O(n log n) time.

◦ Sort by finish time: O(n log n)

◦ Computing p(·): O(n log n) via sorting by start time

◦ Running time of OPT is only O(n)

5


