CS580 Algorithm Design, Analysis, and Implementation

Lecture notes, Jan 25, 2022
Wufei Ma

1 Search Trees

Binary tree. Each node has two children, which could be empty. It also has a parent,
which could also be empty.

o A node without any children (both empty) is a leaf node.

e}

The node without a parent is a root node.

e}

7 is a descendant of y if <y is a child of y or a descendant of a child of p.

e}

If 7y is a descendant of i, then y is an ancestor of -.

(0]

The depth of y is the number of edges from root to .

e}

The height of ;1 is the max number of edges from y to a leaf.

e}

The subtree of u consists of 1 and its descendant.

A node can be implemented with three node pointers and a key, and a tree can be
represented by a node.

~oot

C:é;;z ;
&
Eff:fé; " ;iiiiillllllllllll’
Leaf
Subtrer 6%}A

Figure 1: A binary tree.

Traversals. There are three types of traversals, in-order, pre-order, and post-order.

Procedure In-Order(u):
if u !'= null then:
In-Order(u.l)
print (u.key)
In-Order(u.r)
endif

Nl = W N =

1 Procedure Pre-Order(u):
2 if u '= null then:
3 print(u.key)

4 In-Order (u.1)

5 In-Order(u.r)

6 endif

1 Procedure Post-Order (u):
2 if u != null then:
3 In-Order(u.1)

4 In-Order(u.r)

5 print (u.key)

6 endif

N Pvem&w tvowsnash

o trovden trovercal
o postordos traveres)

5,7

Figure 2: Tree traversals.

A property. u is an ancestor of vy if and only if pre(u) < pre(y) and post(y) >
post(7y).

/4

pre () < prely) post() > best(¥)

Figure 3: A property.

Binary search tree. A binary tree is a binary search tree if the keys printed in-order
is sorted.

All operations on binary search tree, including Search, Min, Successor, and Insertion,
are in O(h).

Searching.
1 Function Search(x, u):
2 if u == null or x = u.key then:
3 return u
4 else:
5 if x < u.key then:
6 return Search(x, u.l)
7 else:
8 return Search(x, u.r)
Insertion.
1 Procedure Insert(p, r):
2 # insert r into a tree denoted by p
3 X = null
4 u=p
5 while u '= null:
6 X =u
7 if r.key < u.key then:
8 u=u.l
9 else:
10 u=u.r
11 endif
12 endwhile
13 r.p=x
14 if x == null then:
15 p=r
16 else:
17 if r.key < x.key then:
18 x.l=r
19 else:
20 X.r =r
21 endif
22 endif
Deletion.

1. Case I: The node has no children. Just delete this node.
2. Case II: The node has one child. Replace with the child.

3. Case III: The node has two children. Replace the key with its successor. Delete
its successor. (The successor has at most one child).

Figure 4: Deletion.

2 Dynamic Programming
Algorithmic paradigms.
o Greedy
o Divide-and-conquer
o Dynamic programming
Weighted interval scheduling. Job j starts at s;, finishes at f;, and has weight (or

value) v;. Two jobs are compatible if they don’t overlap. The goal is to find the
maximum weight subset of mutually compatible jobs.

b

g

h

: || Time
0 1 2 3 4 5 6 7 8 9 10

Figure 5: Weighted interval scheduling.

If all weights are 1, the greedy algorithm works, and we pick the job with the earliest
finish time that is compatible with chosen jobs.

Without loss of generality, we assume f; < --- < f,,. Let p(j) be the largets index
i < jsuch that job i is compatbile with j. Let 0PT(j) be the value of optimal solution
to the problem consisting of jobs 1, ...,].

o Case I: OPT selects job j. We collect profit v; and OPT (p(j).
o Case II: OPT does not select job j. We collect profit OPT(j-1).
We have

0 ifj=0

OPT(j) = {max{vj + OPT(p(j)),OPT(j —1)} otherwise

Implementation. Store results of sub-problems in a cache to avoid computing sub-
problems multiple times. This algorithm takes O(nlogn) time.

o Sort by finish time: O(nlogn)
o Computing p(-): O(nlogn) via sorting by start time

o Running time of 0PT is only O(n)

