CS580 Algorithm Design, Analysis, and Implementation

Lecture notes, Jan 18, 2022 Wufei Ma

1 Quick Sort

Given an array of elements A.

- 1. Divide: split A[p...r] into A[p...q] and A[q+1...r].
- 2. Recurse: sort A[p...q] and A[q+1...r].
- 3. Combine: automatic.

```
1 Procedure QuickSort(p, r):
2 if p < r:
3 q := Partition(p, r)
4 QuickSort(p, q)
5 QuickSort(q+1, r)
```

Partition. The objective is to split A into a left and a right part so that all numbers in the left part are less or equal to all numbers in the right.

1	<pre>Procedure Partition(p, r):</pre>
2	x := A[p]
3	i = p - 1
4	j = r + 1
5	while True:
6	while $A[j] > x$:
7	j = j - 1
8	while A[i] < x:
9	i = i + 1
10	if i < j:
11	<pre>swap(A[i], A[j])</pre>
12	else:
13	return j

- If A[p] is the smallest, then the partition is p and the recursion continues with two arrays with length 1 and r p respectively.
- If A [p] is K-smallest, for K ≥ 2, then partition is K 1 and the recursion continues with two arrays with length k 1 and (r p + 1) (k 1) = r p k + 2 respectively.

Worst case. In the worst case, each partition splits the array of length n - 1 into two arrays of length 1 and n - 1. The time complexity is:

$$T(n) = T(n-1) + T(1) + n$$

= $n + (n-1) + \dots + 2 + n$
= $\frac{n(n+1)}{2} + (n-1) = \Theta(n^2)$

Figure 1: Worst case.

Best case. In the best case, each partition splits the array into two arrays of equal lengths (or differs by 1).

$$T(n) = 2T(n/2) + n$$

= 2 \cdot (2T(n/4) + n/2) + n
= 4 \cdot T(n/4) + 2n
= \cdots
= n \cdot T(1) + n \log n
= \overline{\Overline{n}}
= \overline{\Overline{n}}

Figure 2: Best case.

Randomized quick sort.

1	Procedure Random-Partition(p,	r):
2	i := Random(p, r)	
3	<pre>swap(A[p], A[i])</pre>	
4	return Partition(p, r)	

The complexity is given by the **average analysis**. We have

$$T(n) = \frac{1}{n} \sum_{q=1}^{n-1} (T(q) + T(n-q) + \Theta(n))$$
$$= \frac{2}{n} \sum_{k=1}^{n-1} T(k) + \Theta(n)$$

We prove by induction. Assume $T(n) \le an \log n + b$ for n = 1, ..., n - 1. It follows that

$$T(n) \le \frac{2}{n} \sum_{k=1}^{n-1} (ak \log k + b) + \Theta(n)$$

= $\frac{2a}{n} \sum_{k=1}^{n-1} k \log k + \frac{2b(n-1)}{n} + \Theta(n)$

Since

$$\sum_{k=1}^{n-1} k \log k \le \frac{1}{2} n^2 \log n - \frac{n^2}{8}$$

We have

$$T(n) \le an \log n - \frac{an}{4} + 2b + \Theta(n)$$

= $an \log n + b + (\Theta(n) + b - \frac{an}{4})$
 $\le an \log n + b$

if we have

$$\Theta(n) + b - \frac{an}{4} \le 0$$
$$a \ge 4c + 4b$$

Note that *c* is given from $\Theta(n)$, we can guarantee this inequality by properly choosing the values of *a* and *b*.