CS580 Algorithm Design, Analysis, and Implementation

Lecture notes, Jan 18, 2022
Wufei Ma

1 Quick Sort

Given an array of elements A.

1. Divide: split $A[p \ldots r]$ into $A[p \ldots q]$ and $A[q+1 \ldots r]$.
2. Recurse: sort $\mathrm{A}[\mathrm{p} \ldots \mathrm{q}]$ and $\mathrm{A}[q+1 \ldots \mathrm{r}]$.
3. Combine: automatic.
```
Procedure QuickSort(p, r):
    if p < r:
        q := Partition(p, r)
        QuickSort(p, q)
        QuickSort(q+1, r)
```

Partition. The objective is to split A into a left and a right part so that all numbers in the left part are less or equal to all numbers in the right.

```
Procedure Partition(p, r):
    x := A[p]
    i = p - 1
    j = r + 1
    while True:
        while A[j] > x:
        j = j - 1
        while A[i] < x:
                i = i + 1
        if i < j:
            swap(A[i], A[j])
        else:
            return j
```

- If $A[p]$ is the smallest, then the partition is p and the recursion continues with two arrays with length 1 and $r-p$ respectively.
- If A [p] is K-smallest, for $K \geq 2$, then partition is $K-1$ and the recursion continues with two arrays with length $k-1$ and $(r-p+1)-(k-1)=r-p-k+2$ respectively.

Worst case. In the worst case, each partition splits the array of length $n-1$ into two arrays of length 1 and $n-1$. The time complexity is:

$$
\begin{aligned}
T(n) & =T(n-1)+T(1)+n \\
& =n+(n-1)+\cdots+2+n \\
& =\frac{n(n+1)}{2}+(n-1)=\Theta\left(n^{2}\right)
\end{aligned}
$$

Figure 1: Worst case.

Best case. In the best case, each partition splits the array into two arrays of equal lengths (or differs by 1).

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \\
& =2 \cdot(2 T(n / 4)+n / 2)+n \\
& =4 \cdot T(n / 4)+2 n \\
& =\cdots \\
& =n \cdot T(1)+n \log n \\
& =\Theta(n \log n)
\end{aligned}
$$

Figure 2: Best case.

Randomized quick sort.

```
1 Procedure Random-Partition(p, r):
2
3
4 return Partition(p, r)
```

The complexity is given by the average analysis. We have

$$
\begin{aligned}
T(n) & =\frac{1}{n} \sum_{q=1}^{n-1}(T(q)+T(n-q)+\Theta(n)) \\
& =\frac{2}{n} \sum_{k=1}^{n-1} T(k)+\Theta(n)
\end{aligned}
$$

We prove by induction. Assume $T(n) \leq a n \log n+b$ for $n=1, \ldots, n-1$. It follows that

$$
\begin{aligned}
T(n) & \leq \frac{2}{n} \sum_{k=1}^{n-1}(a k \log k+b)+\Theta(n) \\
& =\frac{2 a}{n} \sum_{k=1}^{n-1} k \log k+\frac{2 b(n-1)}{n}+\Theta(n)
\end{aligned}
$$

Since

$$
\sum_{k=1}^{n-1} k \log k \leq \frac{1}{2} n^{2} \log n-\frac{n^{2}}{8}
$$

We have

$$
\begin{aligned}
T(n) & \leq a n \log n-\frac{a n}{4}+2 b+\Theta(n) \\
& =a n \log n+b+\left(\Theta(n)+b-\frac{a n}{4}\right) \\
& \leq a n \log n+b
\end{aligned}
$$

if we have

$$
\begin{array}{r}
\Theta(n)+b-\frac{a n}{4} \leq 0 \\
a \geq 4 c+4 b
\end{array}
$$

Note that c is given from $\Theta(n)$, we can guarantee this inequality by properly choosing the values of a and b.

