
CS580 Algorithm Design, Analysis, and Implementation

Lecture notes, Jan 13, 2022
Wufei Ma

1 Heap

Binary tree. A binary tree of depth n is balanced if all the nodes at depths 0 through
n − 2 have two children. (The only depth that is not ”full” is depth n.)

A balanced binary tree of depth n is left-justified if it has 2n nodes at depth n or
2k nodes at depth k, for all k < n, and the leaves at depth n are as far left as possible.

Figure 1: Binary tree.

Heap. A heap is a left-justified or complete binary tree with the property that no
node has a value greater than the value in its parent.

Figure 2: Heap.

Since the heap is a left-justified binary tree, we may implement the heap as an
array. The embedding is defined by:

1 root = 1

2 l(i) = 2i

3 r(i) = 2i + 1

4 p(i) = floor(i/2)

and the heap property is given by A[i] <= A[p(i)] for all i.

The height of a node is the number of edges on the longest downward path starting
at the node. The height of a heap is the height of the root. Since the heap is balanced,

1

Figure 3: Heap as an array.

we have

h−1

∑
i=0

2i + 1 ≤n ≤
h

∑
i=0

2i

2h ≤n ≤ 2h+1 − 1
log(n + 1)− 1 ≤h ≤ log n

Maintain a heap. DownHeap extends the heap property by one more node.

1 Procedure DownHeap(i):

2 max := i

3 if l(i) <= heap_size[A] and A[max] < A[l(i)]

4 max := l(i)

5 if r(i) <= heap_size[A] and A[max] < A[r(i)]

6 max := r(i)

7 if max != i

8 swap(A[i], A[max])

9 Downheap(max)

The cost is O(h). This procedure can also be written as an iterative algorithm.

Figure 4: UpHeap.

Construct a heap. The idea is to construct the heap from bottom up.

1 Procedure BuildHeap(n):

2 for i := n down to 1

3 Downheap(i)

2

The cost is O(n log n), but a tighter analysis is possible. The amount of time to build
the heap is at most

h

∑
i=0

2iO(h − i) = O

!
h

h

∑
i=0

2i −
h

∑
i=0

2i · i

"

= O
#

h · 2h+1 − h − h · 2h+1 + 2h+1 − 1
$

= O(2h+1 − h − 1)
= O(n)

Heap sort. The input is an unsorted array A[1...n].

1 Procedure HeapSort(n):

2 BuildHeap(n)

3 heap_size[A] := n

4 for i := n down to 2 do swap(A[1], A[i])

5 heap_size[A] := i-1

6 DownHeap(1)

The complexity is O(n log n).

Heap as a priority queue. A priority queue stores a multiset of S keys and support
operations:

◦ Insert(x): insert a new element.

◦ Delete(i): delete element at location i.

◦ Max: return the largest key.

◦ ExtractMax: return the largest key and remove it.

and each operation takes O(log n) time.

1 Procedure Insert(x):

2 heap_size[A] := heap_size[A] + 1

3 i := heap_size[A]

4 A[i] = x

5 UpHeap(i)

6
7 Procedure UpHeap(i):

8 while i > 1 and A[i] > A[p(i)]:

9 swap(A[i], A[p(i)])

10 i := p(i)

1 Procedure Delete(i):

2 A[i] := A[heap_size[A]]

3 heap_size[A] := heap_size[A] - 1

3

4 if A[i] < A[p(i)]

5 DownHeap(i)

6 else

7 UpHeap(i)

1 Procedure ExtractMax:

2 max := A[1]

3 Delete(1)

4 return max

4

