CS580 Algorithm Design, Analysis, and Implementation

Lecture notes, Jan 11, 2022 *Wufei Ma*

1 Introduction

Interval scheduling. The input is a set of jobs with start times and finish times. The goal is to find **maximum cardinality subset** of mutually compatible jobs. ($O(n \log n)$ greedy algorithm.)

Weighted interval scheduling. The input is a set of jobs with start times, finish times, and weights. The goal is to find **maximum weight** subset of mutually compatible jobs. ($O(n \log n)$ dynamic programming algorithm.)

Bipartite matching. The input is a bipartite graph. The goal is to find **maximum** cardinality matching. See Figure 1. ($O(n^k)$ max-flow based algorithm.)

Figure 1: Bipartite matching.

Independent set. The input is a graph. The goal is to find **maximum cardinality** independent set. See Figure 2. (NP complete.)

2 Review

Desirable scaling property. When the input size doubles, the algorithm only slow down by some constant factor *C*. More formally, there exists constant c > 0 and d > 0 such that on every input of size *N*, its running time is bounded by cN^d steps.

Polynomial time. An algorithm is poly-time if the scaling property holds. An algorithm is **efficient** if its running time is polynomial.

Figure 2: Independent set.

• Some exponential-time (or worse) algorithms are widely used because the worstcase instances seem to be rare.

Worst case running time. Obtain bound on **largest possible** running time of algorithm on input of a given size *N*.

Average case running time. Obtain bound on running time of algorithm on **random** input as a function of input size *N*.

Asymptotic order or growth.

- **Upper bound.** T(n) is O(f(n)) if there exists constant c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \le c \cdot f(n)$.
- **Lower bound.** T(n) is $\Omega(f(n))$ if there exists constant c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \ge c \cdot f(n)$.
- **Tight bound.** T(n) is $\Theta(f(n))$ if T(n) is both O(f(n)) and $\Omega(f(n))$.

Asymptotic bounds for some common functions.

- Log grows slower than polynomial: for every x > 0, $\log n = O(n^x)$.
- Exponential grows faster than polynomial: for every r > 1 and every d > 0, $n^d = O(r^n)$.