CS580 Algorithm Design, Analysis, and Implementation

Lecture notes, Jan 11, 2022
Wufei Ma

1 Introduction

Interval scheduling. The input is a set of jobs with start times and finish times. The goal is to find maximum cardinality subset of mutually compatible jobs. $(O(n \log n)$ greedy algorithm.)

Weighted interval scheduling. The input is a set of jobs with start times, finish times, and weights. The goal is to find maximum weight subset of mutually compatible jobs. $(O(n \log n)$ dynamic programming algorithm.)

Bipartite matching. The input is a bipartite graph. The goal is to find maximum cardinality matching. See Figure 1. ($O\left(n^{k}\right)$ max-flow based algorithm.)

Figure 1: Bipartite matching.

Independent set. The input is a graph. The goal is to find maximum cardinality independent set. See Figure 2. (NP complete.)

2 Review

Desirable scaling property. When the input size doubles, the algorithm only slow down by some constant factor C. More formally, there exists constant $c>0$ and $d>0$ such that on every input of size N, its running time is bounded by $c N^{d}$ steps.

Polynomial time. An algorithm is poly-time if the scaling property holds. An algorithm is efficient if its running time is polynomial.

Figure 2: Independent set.

- Some exponential-time (or worse) algorithms are widely used because the worstcase instances seem to be rare.

Worst case running time. Obtain bound on largest possible running time of algorithm on input of a given size N.

Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N.

Asymptotic order or growth.

- Upper bound. $T(n)$ is $O(f(n))$ if there exists constant $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$ we have $T(n) \leq c \cdot f(n)$.
- Lower bound. $T(n)$ is $\Omega(f(n))$ if there exists constant $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$ we have $T(n) \geq c \cdot f(n)$.
- Tight bound. $T(n)$ is $\Theta(f(n))$ if $T(n)$ is both $O(f(n))$ and $\Omega(f(n))$.

Asymptotic bounds for some common functions.

- Log grows slower than polynomial: for every $x>0, \log n=O\left(n^{x}\right)$.
- Exponential grows faster than polynomial: for every $r>1$ and every $d>0$, $n^{d}=O\left(r^{n}\right)$.

