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1 Amortized Analysis

Binary counting. We have n = ∑k
i=0 A[i] · 2i. We increment the number stored in A

with the following algorithm.

1 Procedure Increment:

2 i = 0

3 while A[i] = 1 do:

4 A[i] = 0

5 i = i + 1

6 endwhile

7 A[i] = 1

Figure 1: Binary counting problem.

Since A has 1 + ⌊log n⌋ bits, the total time/number of steps it takes to increment
from 0 to n − 1 is O(n log n).

Aggregate method. Let bi be the number of 1’s in the binary representation of i. Let
ti be the trailing 1’s in the binary representation of i. The total time is proportional
to the number of bit changes

n−2

∑
i=0

1 + ti ≤ n +
n
2
+ · · ·+ 1 ≤ 2n

Therefore the total time is T(n) = O(n) and the amortized cost per operation is
T(n)

n = O(1).
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Accounting method. This analysis charges each operation an “amortized cost”. If
the amortized cost exceeds the actual cost, the excess remains in a data structure
as credit. If the amortized cost is small enough so that the actual cost can not be
covered, it is paid by credit.

Let the amortized cost of changing 0 to 1 be $2 and the cost of changing 1 to 0 be
$0. When 0 is changed to 1, we pay $1 and save $1 in the credit, which is later
used to change from 1 to 0. Each time we invoke Increment, the amortized cost is 2.
Therefore, there are at most 2n costs.

Potential method. Very similar to the accounting method. The only difference is that
no explicit credit is saved. Instead, the credits are expressed by a “potential” of the
data structure involved.

Let ci be the cost of the i-th operation. Let Di be the data structure after the i-th
operation. Let Φ(Di) be the potential of Di. We have

ai = ci + Φ(Di)− Φ(Di−1)

It follows that

n

∑
i=1

ai =
n

∑
i=1

(ci + Φ(Di)− Φ(Di−1))

=
n

∑
i=1

ci + Φ(Dn)− Φ(D1)

If we choose Φ(D0) = 0 and Φ(Dn) ≥ 0, then ∑n
i=1 ci ≤ ∑n

i=1 ai, which means the
total amortized cost is an upper bound of the acutal cost.

In the binary counting problem, we define Φ(Di) = bi. It follows that

Φ(Di)− Φ(Di−1) = bi − bi−1 = (bi−1 − ti−1 + 1)− bi−1 = 1 − ti−1

ci = ti−1 + 1
ai = ci + Φ(Di)− Φ(Di−1) = 2

Since Φ(D0) = 0 and Φ(Dn) ≥ 0, ∑n
i=1 ai = 2n is an upper bound of the total cost.

2 Fibonacci Heaps

Fibonacci heap supports the following operation efficiently in amortized analysis.

Fibonacci heap is a collection of heap-ordered trees. The parent has a lower key than
its children.

1. Siblings are doubly-linked in a cycle.
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operation amortized time
Make heap O(1)

Insert O(1)
Min O(1)

Meld O(1)
Delete min O(log n)

Delete O(log n)
Decrease key O(1)

Table 1: Amortized time of Fibonacci heap.

2. Parent pointer.

3. Child pointer (one child).

The roots of the heap-ordered trees are linked in a doubly-linked cycle plus a pointer
to the minimum key node. Each node consists of

1. 4 pointers (parent p(x), child c(x), left sibling l(x), and right sibling r(x))

2. 1 real number as the key k(x)

3. 1 integer as the item i(x)

4. 1 bit as the marking mark(x)

5. 1 integer as the degree (number of children) degree(x)

Figure 2: Fibonacci heap.

Linking. Given two heap-ordered trees, make root with bigger key the child of the
other root. O(1) time.

Unlinking. O(1) time.

Merge cycle. O(1) time.

Potential function. Let z1, . . . , zn be the sequence of operations. Let ti(H) be the
number of roots in the root list of H after operation zi. Let mi(H) be the number of
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marked nodes in H after operation zi. The potential is given by

Pi(H) = ti(H) + 2mi(H)

with P0(H) = 0. Let T(zi) be the actual time for operation zi. We have

A(zi) = T(zi) + (Pi(H)− Pi−1(H))
n

∑
i=1

T(zi) =
n

∑
i=1

(A(zi) + Pi−1 − Pi)

= P0 − Pn +
n

∑
i=1

A(zi)

= (t0 − tn) + 2(m0 − mn) +
n

∑
i=1

A(zi)

= −(tn + 2mn) +
n

∑
i=1

A(zi)

≤
n

∑
i=1

A(zi)

Make heap. Create a null pointer. O(1) time.

Min. Return the minimum key in H. We have Pi − Pi−1 = 0 and the amortized time
is the actual time O(1).

Meld. Merge the root cycles of H1 and H2. Adjust the min pointer to the new min.
The potential change is

Pi − Pi−1 = (ti + 2mi)− (ti−1(H1)− 2mi−1(H − 1))− (ti−1(H2)− 2mi−1(H − 2))
= 0

The amortized cost is the actual cost O(1).

Insert. Create a F-heap H1 with one node x. Meld H and H1. Let H′ be the new
heap. We have

Pi(H′) = ti−1(H) + 1 + 2mi−1(H)

so

Pi − Pi−1 = 1

The amortized time is one plus the actual time, which is O(1).

Delete min. Remove the node with the minimal key from the root cycle. Merge the
root cycle with the cycle of children of this node. While two roots r1 and r2 have
same degrees, link r1 and r2. Adjust the minimum key.
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Figure 3: Step 3 of delete min.

Cost analysis. Let D(n) be the max degree of any node in a n-node F-heap. Actual
costs:

1. Step 1: O(1)

2. Step 2: O(1)

3. Step 3: O(ti−1(H) + D(n))

4. Step 4: O(ti−1(H) + D(n))

Potential change. D(n)+ 1+ 2mi−1(H)− ti−1(H)+ 2mi−1(H) = D(n)+ 1− ti−1(H).
The amortized cost is

n

∑
i=1

ai = O(ti−1(H) + D(n)) + D(n) + 1 − ti−1(H)

= O(D(n))

since we can scale up the units of the potential to dominate the constant hidden in
O(ti−1(H)). D(n) = O(log n) for heaps used in F-heap.
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