CS580 Algorithm Design, Analysis, and Implementation

Lecture notes, Feb 03, 2022
Wufei Ma

1 Dynamic Programming

Subsequence. Given two sequences $X=x_{1} x_{2} \ldots x_{m}$ and $Z=z_{1} z_{2} \ldots z_{k}$. Z is a subsequence of X if there is an increasing sequence of indices $i_{1} i_{2} \ldots i_{k}$ such that for all $j=1 \ldots k, x_{i_{j}}=z_{j}$.

Common sequence. Given two sequences X and Y, we say Z is a common subsequence of X and Y if Z is a subsequence of X and Z is a subsequence of Y.

Longest common sequence (LCS). Given two sequences X and Y, we need to find the longest common subsequence.

Given $X=x_{1} \ldots x_{m}$, the i-th prefix of X is $X_{i}=x_{1} \ldots x_{i}$.
Optimal substructure of LCS. Let $X=x_{1} \ldots x_{m}$ and $Y=y_{1} \ldots y_{n}$ be sequences and $Z=z_{1} \ldots z_{k}$ be the LCS of X and Y.

1. If $x_{m}=y_{n}$, then $z_{k}=x_{m}=y_{n}$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.
2. If $x_{m} \neq y_{n}$, then $z_{k} \neq x_{m}$ and Z is an LCS of X_{m-1} and Y, or $z_{k} \neq y_{n}$ and Z is an LCS of X and Y_{n-1}.

A recursive solution. Let $C(i, j)$ be the length of an LCS of prefixes X_{i} and Y_{j}. We have

$$
\mathrm{C}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \mathrm{C}(i-1, j-1)+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j} \\ \max \{\mathrm{C}(i, j-1), \mathrm{C}(i-1, j)\} & \text { if } i, j>0 \text { and } x_{i} \neq y_{j}\end{cases}
$$

```
Function LCS(X, Y):
```

 \(\mathrm{m}, \mathrm{n}=\operatorname{len}(\mathrm{X}), \operatorname{len}(\mathrm{Y})\)
 for \(i=1\) to \(m\) do:
 \(C[i, 0]=0\)
 for \(j=0\) to \(n\) do:
 \(C[0, j]=0\)
 for \(i=1\) to \(m\) :
 for \(j=1\) to \(n\) :
 if \(x[i]==y[j]:\)
 \(C[i, j]=C[i-1, j-1]+1\)
 11
12
13
14
15
16
17
18
19
20

```
    B[i,j] = "leftup"
        else if C[i-1,j] >= C[i,j-1]:
            C[i,j] = C[i-1,j]
            B[i,j] = "up"
                else:
                    C[i,j] = C[i,j-1]
            B[i,j] = "left"
                endif
    endfor
endfor
```

To find the LCS, we use

```
Function PrintLCS(B, X, i, y):
    if i == 0 or j == 0:
        return
    if B[i,j] == "leftup":
        PrintLCS(B, X, i-1, j-1)
        print X[i]
    elseif B[i,j] == "up":
        PrintLCS(B, X, i-1, j)
    else:
            PrintLCS(B, X, i, j-1)
```


2 Greedy Algorithm

An example. Given a set S of objects A_{i} with weights $w_{i}>0$. Choose a subset $T \subseteq S$ such that $\sum_{A_{i} \in T} w_{i} \leq W$ and $|T|$ is maximized.

The greedy strategy is to choose the objects with the smallest weights.
A scheduling problem. Let $S=\{1, \ldots, n\}$ be a set of activities. Activity i has start time s_{i} and finish time f_{i}. If activity i is scheduled, it occupies the resource in the time interval $\left[s_{i}, f_{i}\right)$ with $s_{i}<f_{i}$. The problem is to maximize the number of activities scheduled.

Figure 1: A scheduling problem.

The strategy is to always choose the one that ends earliest.

1. Sort the activities such that $f_{i} \leq f_{j}$ if $i<j$.
2. $T=\{1\}$, last $=1$.
3. For $i=2$ to n, if $f_{\text {last }} \leq s_{i}$ then $T=T \cup\{i\}$ and last $=i$.

Proof of correctness. This greedy algorithm schedules the largest number of activities.

1. First, observe that activity 1 (with the earliest finish time) can always be chosen. This is because the first activity of any schedule can be replaced by activity 1 without any conflict and gives the same number of activities.
2. After removing all activities i that conflict with activity 1 , this correctness of the algorithm is shown recursively.

Proof by contradiction. Assume the greedy algorithm is not optimal. Let i_{1}, \ldots, i_{k} be the greedy algorithm solution. Let $j_{1}, \ldots j_{m}$ be the jobs in the optimal solution with $i_{1}=j_{1}, \ldots, i_{r}=j_{r}$ for the largest r. In this case we can substitute j_{r+1} with i_{r+1} and finds another optimal solution with first $r+1$ jobs same as the greedy solution, which is contradicted to our assumption.

Figure 2: Proof by contradiction.

Interval partitioning. Lecture j starts at s_{j} and finishes at f_{j}. The goal is to find the minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Depth. The depth of a set of open intervals is the maximum number that contains at any given time. The number of classrooms needed must be larger or equal to the depth.

Greedy algorithm. Consider lectures in increasing order of start time. Assign lectures to any compatible classroom. We open a new classroom is there's no compatible classroom.

Figure 3: Depth of the interval partitioning problem.

The greedy algorithm is optimal. Let d be the number of classrooms that the greedy algorithm allocates. Classroom d is opened because we need to schedule lecture j that is incompatible with all other $d-1$ classrooms. These d jobs finish after s_{j} and starts no later than s_{j}. Thus we have d lecture overlapping at time $s_{j}+\epsilon$. Therefore, all schedules use at least d classrooms and the schedule found by the greedy algorithm is optimal.

