
CS580 Algorithm Design, Analysis, and Implementation

Lecture notes, Feb 03, 2022
Wufei Ma

1 Dynamic Programming

Subsequence. Given two sequences X = x1x2 . . . xm and Z = z1z2 . . . zk. Z is a
subsequence of X if there is an increasing sequence of indices i1i2 . . . ik such that for
all j = 1 . . . k, xij = zj.

Common sequence. Given two sequences X and Y, we say Z is a common subse-
quence of X and Y if Z is a subsequence of X and Z is a subsequence of Y.

Longest common sequence (LCS). Given two sequences X and Y, we need to find
the longest common subsequence.

Given X = x1 . . . xm, the i-th prefix of X is Xi = x1 . . . xi.

Optimal substructure of LCS. Let X = x1 . . . xm and Y = y1 . . . yn be sequences and
Z = z1 . . . zk be the LCS of X and Y.

1. If xm = yn, then zk = xm = yn and Zk−1 is an LCS of Xm−1 and Yn−1.

2. If xm ∕= yn, then zk ∕= xm and Z is an LCS of Xm−1 and Y, or zk ∕= yn and Z is
an LCS of X and Yn−1.

A recursive solution. Let C(i, j) be the length of an LCS of prefixes Xi and Yj. We
have

C(i, j) =

!
"#

"$

0 if i = 0 or j = 0
C(i − 1, j − 1) + 1 if i, j > 0 and xi = yj

max{C(i, j − 1), C(i − 1, j)} if i, j > 0 and xi ∕= yj

1 Function LCS(X, Y):

2 m, n = len(X), len(Y)

3 for i = 1 to m do:

4 C[i, 0] = 0

5 for j = 0 to n do:

6 C[0, j] = 0

7 for i = 1 to m:

8 for j = 1 to n:

9 if x[i] == y[j]:

10 C[i,j] = C[i-1,j-1] + 1

1

11 B[i,j] = "leftup"

12 else if C[i-1,j] >= C[i,j-1]:

13 C[i,j] = C[i-1,j]

14 B[i,j] = "up"

15 else:

16 C[i,j] = C[i,j-1]

17 B[i,j] = "left"

18 endif

19 endfor

20 endfor

To find the LCS, we use

1 Function PrintLCS(B, X, i, y):

2 if i == 0 or j == 0:

3 return

4 if B[i,j] == "leftup":

5 PrintLCS(B, X, i-1, j-1)

6 print X[i]

7 elseif B[i,j] == "up":

8 PrintLCS(B, X, i-1, j)

9 else:

10 PrintLCS(B, X, i, j-1)

2 Greedy Algorithm

An example. Given a set S of objects Ai with weights wi > 0. Choose a subset T ⊆ S
such that ∑Ai∈T wi ≤ W and |T| is maximized.

The greedy strategy is to choose the objects with the smallest weights.

A scheduling problem. Let S = {1, . . . , n} be a set of activities. Activity i has start
time si and finish time fi. If activity i is scheduled, it occupies the resource in the
time interval [si, fi) with si < fi. The problem is to maximize the number of activities
scheduled.

Figure 1: A scheduling problem.

The strategy is to always choose the one that ends earliest.

2

1. Sort the activities such that fi ≤ f j if i < j.

2. T = {1}, last = 1.

3. For i = 2 to n, if flast ≤ si then T = T ∪ {i} and last = i.

Proof of correctness. This greedy algorithm schedules the largest number of activi-
ties.

1. First, observe that activity 1 (with the earliest finish time) can always be chosen.
This is because the first activity of any schedule can be replaced by activity 1
without any conflict and gives the same number of activities.

2. After removing all activities i that conflict with activity 1, this correctness of
the algorithm is shown recursively.

Proof by contradiction. Assume the greedy algorithm is not optimal. Let i1, . . . , ik
be the greedy algorithm solution. Let j1, . . . jm be the jobs in the optimal solution
with i1 = j1, . . . , ir = jr for the largest r. In this case we can substitute jr+1 with ir+1
and finds another optimal solution with first r + 1 jobs same as the greedy solution,
which is contradicted to our assumption.

Figure 2: Proof by contradiction.

Interval partitioning. Lecture j starts at sj and finishes at f j. The goal is to find the
minimum number of classrooms to schedule all lectures so that no two occur at the
same time in the same room.

Depth. The depth of a set of open intervals is the maximum number that contains
at any given time. The number of classrooms needed must be larger or equal to the
depth.

Greedy algorithm. Consider lectures in increasing order of start time. Assign lec-
tures to any compatible classroom. We open a new classroom is there’s no compati-
ble classroom.

3

Figure 3: Depth of the interval partitioning problem.

The greedy algorithm is optimal. Let d be the number of classrooms that the greedy
algorithm allocates. Classroom d is opened because we need to schedule lecture j
that is incompatible with all other d − 1 classrooms. These d jobs finish after sj and
starts no later than sj. Thus we have d lecture overlapping at time sj + !. There-
fore, all schedules use at least d classrooms and the schedule found by the greedy
algorithm is optimal.

4

