
CS580 Algorithm Design, Analysis, and Implementation

Lecture notes, Feb 01, 2022
Wufei Ma

1 Dynamic Programming

Knapsack problem. Given n objects and a knapsack. Item i weighs wi > 0 kilograms
and has value vi > 0. The knapsack has a capacity of W kilograms. The goal is to fill
the knapsack so as to maximize total value.

Let OPT(i, w) be the max profit subset of items 1, . . . , i with weight limit w. We have

OPT(i, w) =

!
"#

"$

0 if i = 0
OPT(i − 1, w) if wi > w
max{OPT(i − 1, w), vi + OPT(i − 1, w − wi)} otherwise

This algorithm can be implemented by filling up an n × W array. The running time
is Θ(nW), which is pseudo-polynomial with respect to the input size.

The decision version of the knapsack problem is NP-complete. Given wi’s and W, is
there a combination of wi’s such that the sum of the weights is exactly W?

Matrix chain multiplication. Given matrices A1, . . . , An of size p0 × p1, . . . , pn−1 ×
pn, find a parenthesization that minimizes the number of multiplications.

For instance, let A1 be a 3 × 2 matrix, A2 be a 2 × 4 matrix, and A3 be a 4 × 1 matrix.
In this case, (A1A2)A3 takes 3 × 2 × 4 + 3 × 4 × 1 = 36 mutliplications. However,
A1(A2A3) takes only 2 × 4 × 1 + 3 × 2 × 1 = 14 multiplications.

Claim. There are 1
n (

2n−2
n−1) different parenthesization of n matrices.

A recursive algorithm. Let mij be the minimal number of multiplications necessary
to compute Ai . . . Aj.

1 Function M(i,j):

2 if i == j:

3 return 0

4 else:

5 min = inf

6 for k = i to j-1 do:

7 multi = M(i,k) + M(k+1,j) + p[i-1]*p[k]*p[j]

8 if multi < min:

9 min = multi

10 endif

1

11 endfor

12 endif

The time complexity of the algorithm is

T(n) =
n−1

∑
k=1

(T(k) + T(n − k)) + O(1)

= 2
n−1

∑
k=1

T(k) + O(1)

≥ 2T(n − 1)

≥
n−1

∑
i=1

2i

= 2n − 1

The problem of this recursive algorithm is that the same subproblem are computed
many times. The solution is to cache the results to the subproblems.

Dynamic prorgramming algorithm. We use a table Mn×n and Sn×n to store the
optimal solution to subproblems.

1 Function MatrixChain(p):

2 for i = 1 to n do:

3 M[i, i] = 0

4 endfor

5 for l = 2 to n do:

6 for i = 1 to n-l+1 do:

7 j = i+l-1

8 M[i, j] = inf

9 for k = i to j-1 do:

10 multi = M[i,k] + M[k+1,j] + p[i-1]*p[k]*p[j]

11 if multi < M[i,j]:

12 M[i,j] = multi

13 S[i,j] = k

14 endif

15 endfor

16 endfor

17 endfor

To output the optimal solution, we use

1 Function PrintParent(S, i, j):

2 if i == j:

3 print(Ai)

4 else:

5 print '('
6 PrintParent(S, i, S[i,j])

2

7 PrintParent(S, S[i,j]+1, j)

8 print ')'
9 endif

The time complexity is O(n3) and the space complexity is O(n2).

Figure 1: An example.

Polygon triangulation. A polygon can be represented with the counter-clockwise
sequence of its vertices.

Figure 2: Convex and non-convex polygons.

Left turns. A polygon is convex if and only if any three consecutive points form a
left turn. The three points a, b, c is a left turn if and only if

det

%

&
ax ay a
bx by 1
cx cy 1

'

(> 0

Existence of a polygon triangulation. A triangulation is a decomposition of the
polygon’s interior into triangles whose vertices are the vertices of the polygon. Every
polygon can be triangulated, which can be proved by induction. In addition, the
number of triangles is n − 2 and the number of chords is n − 3.

3

Constructing the optimal triangulation. Let wij be a non-negative weight of the a
chord connecting node i and j. The goal is to find the triangulation of the polygon
with the maximal sum of weights.

Again, we use two arrays Tn−1×n−1 and Vn−1×n−1 where T(i, l) stores weights of the
best triangulation P(i, i + l) and V(i, l) stores the vertex i + k so that pi pi+k pi+l is a
triangle in the optimal solution.

4

